
CE642: Social and Economic Networks
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

Centrality



Centrality

01



 Often, we are interested in identifying IMPORTANT network 
components
▪ Nodes
▪ Edges

 Central components may play critical role in network functions
▪ Robustness
▪ Collective behavior
▪ Synchronization
▪ Information spreading
▪ Social dynamics
▪ …
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 Which nodes are most ‘central’?
 Definition of ‘central’ varies by context/purpose.
 Local measure:

▪ Degree
 Relative to the rest of the network:

▪ Closeness
▪ Betweenness
▪ Eigenvector (Bonacich power centrality)

 How evenly is centrality distributed among nodes?
▪ Centralization
▪ …Maryam Ramezani Social and Economic Networks 4
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 In each of the following networks, X has higher 
centrality than Y according to a particular measure
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Path-based Measures
for Centrality
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 Measure of centrality in a graph based on shortest 
paths:
▪ Edge Betweenness Centrality
▪ Node Betweenness Centrality

 In a telecommunications network, a node with higher 
betweenness centrality would have more control over 
the network, because more information will pass 
through that node. 
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 Intuition: how many pairs of individuals would have to go 
through you in order to reach one another in the minimum 
number of hops?

 Who has higher betweenness, X or Y?
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 Usually the betweenness is normalized by
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Geometric Measures
for Centrality
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 A network with N nodes
▪ Compute the shortest path (distance) between any two nodes 𝑑𝑖𝑗

▪ The length of the path is the number of edges (unweighted 
networks) or the weighted sum of the edges (weighted networks)

▪ If the nodes are not connected, the path length between them is 
set to infinity

▪ It is also called average geodesic distance
▪ If dij is infinity, it diverges
▪ Many times we compute the average only over the connected 

pairs of nodes (that is, we ignore “infinite” length paths)
▪ .
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 In this way the divergence is avoided
 The inverse of efficiency E is called harmonic mean
 Efficiency is an indicator of the traffic capacity of the
 network
 The couple of disconnected nodes have a contribution 

of zero in computing E
 The more the values of E are the more the

communication-efficient the network is
 It is also called global efficiency of the network.
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 Higher Efficiency → Faster communication, better connectivity.
 Why is Efficiency Important?
▪  High Efficiency → Network is Well-Connected
• Information spreads quickly.
• Fewer intermediate steps needed.
• Helps in optimizing transportation, communication, and social 

interactions.

▪  Low Efficiency → Poor Connectivity
• Long paths between nodes.
• Slower communication and bottlenecks.
• Less effective in handling information flow.
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 A shortcut in a graph is an additional edge that significantly reduces the 
shortest path distance between two nodes without being essential for the 
overall connectivity of the network.

 Extra direct connections between distant nodes.
 Reduce the shortest path distance 𝑑𝑖𝑗 ​.
 Improve efficiency without requiring full connectivity. 
 Real-World Examples:

▪ Social Networks → Influencers create bridges between distant groups.
▪ Transport Networks → Highways and express routes reduce travel time.
▪ Computer Networks → Fast routing through backbone connections (CDNs).

 Fewer hops → Shorter paths → Higher Efficiency.
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 It is important to know which component (nodes or edges) are crucial to 
the best performance.

 The more the drop in the efficiency by removing a component the more 
crucial that component.

 Degree (hub node) might be a criterion
▪ Only degree is not enough, e.g. all vertices of a binary tree network 

have equal degree, i.e. no hub, but disconnection of vertices closer to 
the root and the root itself have a greater impact than of those near 
the leaves.

 The amount of change in the efficiency (or other network properties) as a 
component is removed can be an indicator of the vulnerability
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▪ where 𝑉𝑖 is the vulnerability of component 𝑖 and 𝐸𝑖 is the of 𝑖 E efficiency the networks 
by removed that component.

 𝑉 can be regarded as the vulnerability of the network the ordered distribution of nodes 
with respect to their vulnerability 𝑉𝑖 is related to the network hierarchy.

 The most vulnerable (critical) node occupies the highest position in the network 
hierarchy.

 The same is also true for the edges.
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 How dense the networks are?
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 What if it’s not so important to have many direct friends? 
▪ Degree Centrality is not important

 Or be “between” others
▪  Betweeness Centrality is not important

 But one still wants to be in the “middle” of things, not 
too far from the center.

 Closeness is based on the length of the average 
shortest path between a node and all other nodes in 
the network
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 High Degree Centrality
▪ A person who has many direct friends in a social network.

 High Betweenness Centrality
▪ A person who acts as a bridge between two separate groups.

 High Closeness Centrality
▪ A person who can reach anyone in the network with the fewest 

intermediaries, even if they don’t have many direct friends.
 Closeness Centrality focuses on being "near" other nodes in terms of 

short paths across the entire network, rather than just having many direct 
connections! 
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 Formula:
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 Closeness Centrality is affected by average distances, while 
Harmonic Centrality is influenced by nearby nodes.

 A node can be well-positioned (high Closeness) but still have 
many distant nodes that lower its Harmonic score.

 Harmonic Centrality gives more weight to close neighbors, 
whereas Closeness considers all distances equally.
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 Can a Node Have High Harmonic Centrality but Low Degree?
▪ Imagine you have only two friends, but they are well-connected influencers in the network. Your 

degree is low (only 2 connections). However, because your friends have strong connections, you 
can quickly reach many people. 

 Can a Node Have High Degree but Low Harmonic Centrality?
▪ Imagine a node has 10 direct connections, but all these connections are to each other and not to 

the rest of the network. Degree is high (10 connections), but reaching other parts of the network 
requires multiple hops.

 Can a Node Have High Closeness but Low Harmonic Centrality?
▪ Consider the tree or ring networks.

 Can a Node Have Low Closeness but High Harmonic Centrality?
▪ In a tree structure, a node close to a highly connected hub can still have low Closeness 

(because reaching deep parts of the tree takes many steps). However, its Harmonic 
Centrality is high because it can reach nearby nodes very efficiently. 
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Spectral Measures
for Centrality
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 The eigenvector corresponded to dominant eigenvalue.
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 A matrix M is called a stochastic matrix if all the entries 
are positive and the sum of the elements in each column 
is equal to 1.

 A stochastic matrix is also called probability matrix, 
transition matrix, substitution matrix, or Markov matrix.

 What is the right dominant eigenvalue of a row-based 
stochastic matrix?
▪ 1 (proof in next 2 slides)
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 The Power Method is a simple, iterative algorithm used 
to find the dominant eigenvector (the one associated 
with the largest eigenvalue) of a square matrix A.

 It's one of the easiest ways to compute an eigenvector 
without doing fancy matrix algebra.

 It works best when the matrix is large, sparse, and you 
only need the largest eigenvalue/vector.
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𝒙(𝒌) =
𝑨𝒙 𝒌−𝟏

| 𝑨𝒙 𝒌−𝟏 |
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 Step 1: Start with a random vector
▪ Choose any non-zero vector (e.g., [1, 1, ..., 1]ᵀ) as the initial guess.

 Step 2: Multiply by the matrix
▪ Repeat: x⁽ᵏ⁾ = A x⁽ᵏ⁻¹⁾ to amplify the dominant eigenvector.

 Step 3: Normalize after each step
▪ Rescale x⁽ᵏ⁾ = x⁽ᵏ⁾ / ||x⁽ᵏ⁾‖₂ to keep values stable.

 Step 4: Repeat until convergence
▪ Stop when ‖x⁽ᵏ⁾ − x⁽ᵏ⁻¹⁾‖ < ε (e.g., ε = 10⁻⁶).
▪ Result: x⁽ᵏ⁾ ≈ dominant eigenvector.
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Proof in next slide
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This is a vector that 

stores the centrality 

score for every node in 

the network.

Why we choose the largest 

eigenvector as eigencentraliy?

https://en.wikipedia.org/wiki/Perron

%E2%80%93Frobenius_theorem

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
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The space of eigenvectors 
corresponding to λ=1 is 2-
dimensional, so not unique.



Eigencentrality solves a homogeneous equation:
                                         

  Ac=λc 

 Finds the dominant eigenvector.
 Only works well when the graph is strongly connected.
 In Directed Graph, nodes without incoming links get zero 

centrality.
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 A major problem with eigenvector centrality arises 
when it deals with directed graphs

 Centrality only passes over outgoing edges and in 
special cases such as when a node is in a Directed 
Acyclic Graph (DAG) centrality becomes zero
▪ The node can have many edge connected to it

 To resolve this problem we add bias term 𝛽 to the 
centrality values for all nodes
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Definition

𝐴 𝑝 = max
Ԧ𝑥≠0

𝐴 Ԧ𝑥 𝑝

Ԧ𝑥 𝑝
= max

Ԧ𝑥 𝑝=1
𝐴 Ԧ𝑥 𝑝

It’s the maximum amount by which A stretches a vector of unit length.
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Theorem:
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What happened for symmetric matrix?

𝐴 2 = max |𝜆𝑖|



 The solution to Katz Centrality is:
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Expensive Inverting
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A weighted sum over all walks from all 
nodes to a given node — decayed with 
distance.
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Instead of 
solving directly, 
we iterate this 
recurrence.
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Kat’z solves the inhomogeneous equation:

 Handles disconnected or acyclic graphs
 Gives non-zero centrality even to isolated nodes
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 Problem: 
▪ In directed graphs, when a node has high centrality, it can pass 

that centrality equally to all out-neighbors.
▪ This may overvalue nodes that are simply linked by an important node 

— even if they aren't important themselves.
 Solution:
▪ We can divide the value of passed centrality by the number of 

outgoing links, i.e., out-degree of that node
▪ Each connected neighbor gets a fraction of the source node’s 

centrality
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 Comparing three centrality values
▪ Generally, the 3 centrality types will be positively correlated
▪ When they are not (or low correlation), it usually reveals interesting information
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Any Question?
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