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Why a centrality measure?

Often, we are interested in identifying IMPORTANT network
components
Nodes
Edges
Central components may play critical role in network functions
Robustness
Collective behavior
Synchronization
Information spreading
Social dynamics



Centrality

Which nodes are most ‘central’?
Definition of ‘central’ varies by context/purpose.
Local measure:

Degree

Relative to the rest of the network;
Closeness

Betweenness

Eigenvector (Bonacich power centrality)

How evenly is centrality distributed among nodes?
Centralization



Network Centrality

Given a social network, which nodes are more
important or influential?

Centrality measures were proposed to
account for the importance of the nodes of a
network

High Closeness High Clustering
Centrality Coefficient

Degree=4

Betweenness “
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Network Centrality

In each of the following networks, X has higher
centrality than Y according to a particular measure

Y
X X o—(CO—0O—C0CO—-—0
X Y
Y Y X

indegree outdegree betweenness closeness



Network Centrality

Centrality is used often for detecting:
How influential a person is in a social network?
How well used a road is in a transportation network?
How important a web page is?

Oa . y ?  [Wu and He'15]



Centrality Measures

Geometric Measures:

Importance is a function of distances to other nodes.
Spectral Measures:

Based on the eigen-structure of some graph-related matrix
Path-based Measures:

Take into account all (shortest) paths coming into a node

Highest
e betweenness
centrality

(Path based) (Geometric)

Best
@ closeness
centrality
|
| —
(Geometric)
Highest / Highest
eigenvector degree
centrality centrality
r
0
(SpeCtruaré)Leskovec, Stanford C$224W: Social and Information Network Analysis, Mttp://cs224w.stanford.edu 4



Path-based Measures
for Centrality
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Betweenness Centrality

Measure of centrality in a graph based on shortest

paths:
Edge Betweenness Centrality

Node Betweenness Centrality
In a telecommunications network, a node with higher

betweenness centrality would have more control over
the network, because more information will pass

through that node.



Betweenness Centrality

Intuition: how many pairs of individuals would have to go
through you in order to reach one another in the minimum

number of hops?
Who has higher betweenness, X or Y~




Edge Betweenness Centrality

Py = Zp;éq (I—Pﬁ' (gif' )"f.rpq )

[y IS the number of shortest paths from the p-th to
the g-th node

[ ,o(€;) IS the number of these paths making use of

ef-j.

Usually the betweenness is normalized by | /[(n —1)(n—2)/2]

Number of possible edges



Node Betweenness Centrality

(:.- — Z pEiZq (I—Pt}’ (F) I—PQ’ )

[, IS the number of shortest paths from the p-th to
the g-th node

[ »o(1) Is the number of these shortest paths making
use of the /-th node (except those that are start or
end nodes Is /). (0 —1)(n —2)/2]

Usually the betweenness is normalized by number of pairs of vertices
excluding the vertex itself



Betweenness centrality: an example

Nodes are sized by degree, and colored by betweenness.
Can you spot nodes '

with high o
betweenness but Wskes/ |~

I " e ’:’ .
relatively low easy
degree? Explain o e
how this might SEL A
arise. e
What about high il A\ -
degree but relatively VA '\

low betweenness?



Betweenness Centrality

Why do C and D each have (D
betweenness 17

They are both on shortest
paths for pairs (A,E), and (B,E),
and so must share credit:

Vatla = 1 ® @ o)
Can you figure out why B has

betweenness 3.5 while E has B
betweenness 0.57? ®

m



Connection Graph Stability Scores

= In some applications the importance of the shortest paths
are also important

= The importance of the shortest paths might be different

= The more important paths making use of an edge the
more its importance

= A simple measure of importance would be the length

= The connection graph stability (CGS) method takes into
account this issue

= It has application in synchronization analysis
e The CGS-score b, for the link between the nodes i and j is

defined as N
b{j = Zu:l v>use; €6 P |

uv uy

|P,.|: length of path P, between the nodes u and v

uv



Connection Graph Stability Scores

e
‘ i

Pi; = €45, P13 = €43, Pyg = €158y,

Pis = €16€46€45, P16 = €16, P17 = €12€77
Py = €33, Pay = €54, Pys = €,4845,

Py = €484, Pay = €57, P34 = €538,

P35 = €3€4€45, P3g = €13846, P37 = €385,
Pis = €45, Pag = €46, Py7 = €,4€57, Psg =
€45€46: P57 = €45€24€,7, Psy = €16€1,€)7

b, =|P.|+|B|+|B,|+|P,|=1+2+2+3 =8,
b, =|P,|+|P|=1+2=3,
bis =|Bs|+|Be| +|Ps| +| Py | =3 +1+2+3 =09,

@3=}’||P| p3||P|_1+2+%+2 8,

+ P, |=2+1+2+2+2+3+2+3=17,

by = |Ba| || | P | # || + || + || =
2+1+2+2+3+3=13,

b45:|PlS’ |P’ |P*| |1345|+’]356|+‘])57|:
3+2+3+1+2+3=14,
b—'h’j=‘]315|+|]336|+|]346|+|]356|=3+2+1+2=8_




Geometric Measures
for Centrality
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Degree centrality (undirected)

The more the friends the more the importance (the richer the better)

®
® When is the number of connections the best
centrality measure?
@ ® o people who will do favors for you
o people you can talk to / have a drink with

@ @ @ 033 @
Normalized degree (0s0) 633 (oso © )
centrality:
Degree is divided by the ®

max. possible, i.e. (N-1)

®
@



How equal are the nodes?

* How much variation is there in the centrality scores among
the nodes?

* Freeman’s general formula for centralization (can use other

metrics, e.g. Gini coefficient or standard deviation):
maximum value in the network

> [Con =] ®

C,= ®
@ o LN-DIN=2)] ® ¢
®
500 .0
@ o O @ © ©, ®

C,=0.167



Gini Coefficient (Index)

The bar chart on the left shows a simple distribution of incomes. The total population is split up in 5 parts and ordered from the poorest to the richest 20%.
The bar chart shows how much income each 20% part of of the income distribution earns.

The chart on the right shows the same information in a different way, both axis show the cumulative shares:

The poorest 20% of the population earn 5% of the total income, the next 20% earn 10% — so that the poorest 40% of the population earn 15% etc.
The curve resulting from this way of displaying the data is called the Lorenz Curve.

If there was no income inequality the resulting Lorenz Curve would be a straight line — the ‘Line of Equality’.

A larger area (A) between the Lorenz Curve and the Line of Equality means a higher level of inequality.

The ratio of A/(A+B) is therefore a measure of inequality and is referred to as the Gini coefficient, Gini index, or simply the Gini.

Gini coefficient = A / (A+B)

richest 2( 1009
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Gini Coefficient (Index)

Information Sciences
Volume 462, September 2018, Pages 16-39

Sparsity measure of a network graph: Gini
index

Swati Goswami @ °! 2 &, C.A. Murthy ¢, Asit K. Das °

Show more v

+ Add to Mendeley o Share 9% Cite

https://doi.org/10.1016/].ins.2018.05.044 A Get rights and content




Example: financial trading networks

high centralization: one node low centralization: trades
trading with many others are more evenly distributed



Characteristic path length

A network with N nodes

Compute the shortest path (distance) between any two nodes d;;

The length of the path is the number of edges (unweighted
networks) or the weighted sum of the edges (weighted networks)

If the nodes are not connected, the path length between them is
set to infinity

It is also called average geodesic distance
It dij is infinity, it diverges

Many times we compute the average only over the connected

pairs ?f nodes (that is, we ignore “infinite” length paths)

[ = d..
N(N -1 )Z




In this way the divergence is avoided

The inverse of efficiency E is called harmonic mean
Efficiency is an indicator of the traffic capacity of the
network

The couple of disconnected nodes have a contribution
of zero in computing E

The more the values of E are the more the
communication-efficient the network is

't is also called global efficiency of the network.

1 1
E= —
N(E\-’—l)wz d

a=] i




Efficiency

Higher Efficiency — Faster communication, better connectivity.
Why is Efficiency Important?

%~ High Efficiency — Network is Well-Connected
Information spreads quickly.
Fewer intermediate steps needed.
Helps in optimizing transportation, communication, and social
interactions.

o Low Efficiency — Poor Connectivity
Long paths between nodes. | O
Slower communication and bottlenecks. b= N(N —1 )jz,__jd_j
Less effective in handling information flow.




The Role of Connectivity in Efficiency

Network Type EffectonE

Fully Connected (Strongly Connected 4 High E, every node can reach any other node efficiently.

Component - SCC)

Weakly Connected Component (WCC) v Lower E, some nodes may only be accessible in one
direction.
Disconnected Components @ Very Low E, as some distances are infinite (ignored in

practical calculations).



The Power of Shortcuts

A shortcut in a graph is an additional edge that significantly reduces the
shortest path distance between two nodes without being essential for the
overall connectivity of the network.

Extra direct connections between distant nodes.

Reduce the shortest path distance d;;.

Improve efficiency without requiring full connectivity.
Real-World Examples:

Social Networks — Influencers create bridges between distant groups.
Transport Networks — Highways and express routes reduce travel time.

Computer Networks — Fast routing through backbone connections (CDNS).
Fewer hops — Shorter paths — Higher Efficiency.



Vulnerability

It is important to know which component (nodes or edges) are crucial to
the best performance.

The more the drop in the efficiency by removing a component the more
crucial that component.

Degree (hub node) might be a criterion

Only degree is not enough, e.g. all vertices of a binary tree network
have equal degree, i.e. no hub, but disconnection of vertices closer to
the root and the root itself have a greater impact than of those near
the leaves.
The amount of change in the efficiency (or other network properties) as a
component is removed can be an indicator of the vulnerability



Vulnerability

V= i V=max_ T
1 I

where V; is the vulnerability of component i and E; is the of i E efficiency the networks
by removed that component.
V can be regarded as the vulnerability of the network the ordered distribution of nodes
with respect to their vulnerability V; is related to the network hierarchu.
The most vulnerable (critical) node occupies the highest position in the network
hierarchy.
The same is also true for the edges.



How dense the networks are?



Number of the connections that may exist between n nodes
= directed graph
€max = n*(n'l)
each of the n nodes can connect to (n-1) other nodes
= undirected graph
€max = N*(N-1)/2
since edges are undirected, count each one only once

What fraction are present? ,Q,
= density = e/ €.

= For example, out of 12
possible connections, this graph .:‘
has 7, giving it a density of
7/12 = 0.583

Would this measure be useful for
comparing networks of different sizes L ]
(different numbers of nodes)?



for undirected G density p is defined as

(k)
n—1
for directed G density p is defined as
(k).
n—1
o ® o
® @
© @
® &]
@ @ o °
o [ 4]
N @
complete m = ('27) tree m=n-—1
G is dense if as n — oo thus = 0Oln)

G is sparse if as n — oo thus = ({n)



Closeness

What if it's not so important to have many direct friends?
Degree Centrality is not important
Or be “between” others
Betweeness Centrality is not important
But one still wants to be in the “middle” of things, not
too far from the center.
Closeness is based on the length of the average
shortest path between a node and all other nodes in
the network



High Degree Centrality
A person who has many direct friends in a social network.
High Betweenness Centrality

A person who acts as a bridge between two separate groups.
High Closeness Centrality

A person who can reach anyone in the network with the fewest
intermediaries, even if they don’t have many direct friends.
Closeness Centrality focuses on being "near” other nodes in terms of
short paths across the entire network, rather than just having many direct
connections!



Closeness

Closeness Centrality: Normalized Closeness Centrality

—1
N

C.() = {2 a’(h.f')] Celi) =

j=1

Formula:

Zd(z’,j)/(N—l)
Closeness Centrality:

1
Celos(X) = Zyd(y; X)

length of the shortest path from xtoy

How much a vertex can communicate without relying on
third parties for his messages to be delivered

A B 4 C D E 2 dA.)

Cclos (A) — )

N-1

1+2+3+4
4

-1 -1
=[9} _04

1 C(A)= 2

1+2+3+4 "
Problem: The graph must be (strongly) connected!



Closeness Example

o (o ® @



Harmonic Centrality

Geometric measures

Harmonic Centrality:
Replace the average distance with the harmonic mean of

all distances.
The n(n — 1) distances between every pair of distinct

nodes:

(- 1 ) 1
R D oo DI o

Harmonic mean VFX d(y,x)<oo,y+x
Strongly correlated to closeness centrality
Naturally also accounts for nodes y that cannot reach x
Can be applied to graphs that are not strongly connected




Harmonic Centrality Example




Comparison

Closeness Centrality is affected by average distances, while
Harmonic Centrality is influenced by nearby nodes.

A node can be well-positioned (high Closeness) but still have
many distant nodes that lower its Harmonic score.
Harmonic Centrality gives more weight to close neighbors,
whereas Closeness considers all distances equally.



Closeness vs Harmonic Centrality

Red nodes are closer to all Red nodes are closer to all the other
the other nodes nodes, and have larger degrees

Examples of Closeness centrality, and Harmonic Centrality of the same graph.



Let’s Think

Can a Node Have High Harmonic Centrality but Low Degree?

Imagine you have only two friends, but they are well-connected influencers in the network. Your
degree is low (only 2 connections). However, because your friends have strong connections, you
can quickly reach many people.

Can a Node Have High Degree but Low Harmonic Centrality?

Imagine a node has 10 direct connections, but all these connections are to each other and not to
the rest of the network. Degree is high (10 connections), but reaching other parts of the network
requires multiple hops.

Can a Node Have High Closeness but Low Harmonic Centrality?
Consider the tree or ring networks.
Can a Node Have Low Closeness but High Harmonic Centrality?

In a tree structure, a node close to a highly connected hub can still have low Closeness
(because reaching deep parts of the tree takes many steps). However, its Harmonic
Centrality is high because it can reach nearby nodes very efficiently.



Spectral Measures
for Centrality

%



Spectral Measures

v

Let A € R™ " be the adjacency matrix, defined as:

Spectral measures

A;j =1 if there is an edge from node j to node ¢

Compute thel|left dominant eigenvector|of some This convention means
matr‘ix d e rived from the gra ph e Column j tells you where node 7 is pointing (i.e.. outgoing edges from 7),
* Row % shows you all incoming edges to node i.

Idea: A node’s centrality is a function of the centrality
of its neighbors

Nodes connected to central nodes has a larger centrality score
than those connected to non-central nodes.

Eigenvector Centrality T/ A
Katz’s Index ° . ) .
Page Rank ~ @ .0 . e ®
Hits * @ P ®
- @ o
I [ ]
o« " ® ® y ©®

@ @
Degree centrality Eigenvector centrality
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Left and Right Eigenvectors

We've been working with right eigenvectors and right eigenvalues:
Avy = AgVvy

There may also be left eigenvectors, which are row vectors 1y and
corresponding left eigenvalues kg4:

0T A= kg



Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

ST A ST ST

uj (Avj) = ui (Njvj) = Ajii v

.. but. ..
(G] AV = (ki )V = i}

There are only two ways that both of these things can be true.
Either

ki=AX or i V=0



Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true.
Either

kKi=Aj or u;vi=0

Remember that eigenvalues solve |A — Agl/| = 0. In almost all
cases, the solutions are all distinct (A has distinct eigenvalues),
l.e., Aj # Aj for i # j. That means there is at most one \; that
can equal each k;:

i#j G V=0

=] Kji=A\j



Symmetric matrices: left=right

If Ais symmetric (A= AT), then the left and right eigenvectors
and eigenvalues are the same, because

;.H.JIT _ g;TA _ (ATL}})T _ (Ag})T

.. and that last term is equal to ;] if and only if &} = V;.



Dominant Eigenvector

The eigenvector corresponded to dominant eigenvalue.

Definition

Let Ay, Ao,..., A, be the
eigenvectors of an n X n matrix
A. )\ i8 called the dominant
eigen value of A if



Stochastic Matrix

A matrix M is called a stochastic matrix if all the entries
are positive and the sum of the elements in each column
is equal to 1.

A stochastic matrix is also called probability matrix,
transition matrix, substitution matrix, or Markov matrix.

What is the right dominant eigenvalue of a row-based
stochastic matrix?

1 (proof in next 2 slides)



Theorem about Stochastic Matrix

The stochastic matrix A has an eigenvalue 1.

We compute that

a1 a2 ... Qin 1 [a11 + a2 + -+ + ain
a1 @z ... Q2 1 as +ag +---+az, .
[ Ap1 Qp2 ... Qpp _1_ | Gp1 +Qp2 -+ Qpp _1-
Here the second equality follows from the definition of a right stochastic matrix.
(Each row sumsupto 1.)
"1
This computation shows that 1 is an eigenvector of A and | : | is an eigenvector corresponding to the eigenvalue 1.




Theorem about Stochastic Matrix

The absolute value of any eigenvalue of the stochastic matrix A is less than or equal to 1.

Let A be an eigenvalue of the stochastic matrix A and let v be a corresponding eigenvector.

That is, we have
Av = Av.
Comparing the z-th row of the both sides, we obtain
a;1v1 + @v2 + -+ + aipvy = Av; (%)

fore =1,...,n.



Theorem about Stochastic Matrix

Let

|Uk| — IIlE].X{l'Ull.} |'U2|1 ety ‘Un‘}t
namely vy, is the entry of v that has the maximal absolute value.

Note that |vg| > 0 since otherwise we have v = 0 and this contradicts that an eigenvector is a nonzero vector.

Then from (*) with 2 = k, we have

Al - [vk] = |akiv1 + arova + - - - + @k vn
< ap1|v1| + az|vz| + - - + agn|vn| (by the triangle inequality and a;; > 0)
< ap1|ve| + az|vk| + - - - + akn|vK| (since |vk| is maximal)
= (akl —|—{1kg + -+ ﬂkn)|Uk| = |Uk|

Since |vg| > 0, it follows that

as required.



Power Method

The Power Method is a simple, iterative algorithm used
to find the dominant eigenvector (the one associated
with the largest eigenvalue) of a square matrix A.

it's one of the easiest ways to compute an eigenvector
without doing fancy matrix algebra.

't works best when the matrix is large, sparse, and you
only need the largest eigenvalue/vector.



Power Method

Given a square matrix A € R"™", show that the power method:
Ax(k—l)
- ||AxtD]]

converges to the eigenvector corresponding to the dominant eigenvalue of A, as k — 0.

()



Power Method

Step 1: Start with a random vector

Choose any non-zero vector (e.g,, [1, 1, .., 1]P) as the initial guess.
Step 2. Multiply by the matrix

Repeat: x = A x¥ to amplify the dominant eigenvector.
Step 3: Normalize after each step

Rescale x* = x® /||x™)||, to keep values stable.
Step 4: Repeat until convergence

Stop when Ix® - x| < e (e.g, € =107,
Result: x®¥ = dominant eigenvector.



Proof of Power Method

Step 1: Decompose the initial vector

Since A has eigenvectors vi, Vo, ..., Vy, We can write:

x = e1vi + eovo + -+ vy

Where ¢; # 0 (we assume it has a non-zero projection on the dominant eigenvector).

Step 2: Multiply by A
Now apply A once:

xM) = Ax'" = 1 Avi + 2 Avy + -+ 4 AV = I A1V] + 2 AaVa + -+ Cp AV

Repeat this process k times:

xk) = Akx(0) = M vy + eoMivy + -+ ey,




Proof of Power Method

Step 3: Factor out \¥

A\ A\
xk) — ,\‘Ef (C1V1 + C2 ()\_?) Vo £+ Cy ()\_T) Vn)

(k
Now observe: 13 X" )
. 1111 — IV
Since [A2/A1| < 1, we have: . ||K{LJH 1
A\
(A—l) —0 ask — oo forallz > 2
1
Assume that the eigenvector v is normalized to have unit length (i.e., ||v1|| = 1). Then the norm of

(k)

x'\"/ is approximately:

XM % [leidfvi]| = e - [[val = e )]




Eigencentrality

Spectral measures

Eigenvector Centrality: Measure of the
influence of a node in a network

Idea: Every node starts with the same score,
and then each node gives away its score to |ts

SUCCeSssors .
Ceig(x) — zZy—wc Ceig(y) ® . . :
o @
Normalization constant = ||c,;, || ..
® )

Intuitively: Degree counts walks of
length one, the eigenvalue centrality ° o ®
counts walks of length infinity ®



How to compute Eigencentrality?

Power Iteration: o
Setc(® « 1,k 1 o
1: ¢c® « Ack-D (s )

2: C(k): C(k)/HC(k) Hz
3:If ”c(") - c("_l)H > &
4: k< k+1,gotol

1 2 3 4 5

0 1 10071 1

1 0 111])2 1
A=|11 00 1] 3 c=|1

01 000|? 1

01100l 1




How to compute Eigencentrality?

Power lteration: o
1 2 345
170 1 10 011 27 -0.341
2{1 0 1 111 4 0.68 o
lterationl 311 1 0 0 1||1| = |3] = |0.51
410 1 0 0 0ff1 1 0.17 °
501 1 0 ollgd 2. L0.34
A c©® ¢ = Ac® D = V]|V,
0 1 1 0 0770.347 1.197 [0.45
1 0 1 11|loes| [136] ]0.51
Iteration 2 11 00 111051|=11.36|=]0.51
01 0 0o0|lo17| [0.68] ]0.25
0 1 1 0 0dtp.34] L1191 1p.4s5.
0 1 1 0 0770.457 1.027 10.38 -1
teration 3 1 0 1 11{los1] [166] |0.62 1.41
11 00 1{[o51|=]1.41|=]0.53 c=11.27
01 0 0o0}|lo.25] [051] ]0.19 0.52
0 1 1 0 oltp.asl Ll1.021 1o.38 L1




Eigenvalue centrality counts walks of length infinity



Eigencentrality

Spectral measures

Eigenvector Centrality: Measure of the influence of a
node in a network:

1
Ceig®) =7 ) Ceig(®)

YA
Ceig CONverges to the dominant eigenvector of adj. matrix 4

A converges to the dominant eigenvalue of adj. matrix 4

Equivalently, eigencentrality is the eigenvector correspond

to the dominant eigenvalue (A1) of 4
AX = 1X

Proof in next slide



Eigencentrality (Proof)

A;; =1 ifthere is an edge from node j to node ¢

- - , 1 :
Ccig(l) Ceig (1) = by Z Ajj Ceig(J)
Ceig(2) j=1
T v
| Ceig (n)_ c — lAc
This is a vector that
stores the centrality G

score for every node in
the network.

Why we choose the largest
eigenvector as eigencentraliy?
https.//en.wikipedia.org/wiki/Perron
%E2%380%93Frobenius_theorem



https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem

Problem with Eigencentrality

Spectral measures - Y

0O 1 0 O

Problem: Graph should be strongly connected! 1 0 0 O
A=

0 1 0 1 00 01

A = L 0]’ 4= [1 0] 0 0 1 0

Both blocks have eigenvalues:
A=+1,-1

The space of eigenvectors

corresponding to A=1is 2-

dimensional, so not unique.

So the eigenvalues of the full matrix A are:
A=1,1-1,—-1
There are two independent eigenvectors for A = 1
1. One is non-zero only in nodes 1-2 (e.g.,, 1,1, 0, U}T)

2. The other is non-zero only in nodes 3-4 (e.g., i[}, 0,1, l]T)



Conclusion

solves a homogeneous equation:
AC=AC

Finds the dominant eigenvector.
Only works well when the graph is strongly connected.
In Directed Graph, nodes without incoming links get zero

centrality.



Katz’s Index

A major problem with eigenvector centrality arises

when it deals with directed graphs o
Centrality only passes over outgoing edges and in o e
special cases such as when a node is in a Directed

Acyclic Graph (DAG) centrality becomes zero o e

The node can have many edge connected to it
To resolve this problem we add bias term S to the
centrality values for all nodes

Eigenvector Centrality




Review

Maryam Ramezani

Social and Economic Networks

71



Matrix Induced P-Norm

Definition

1A%, 4
IAll, = max—=— = max [[Ax]],
x#0 ||X||p x|, =1

It’s the maximum amount by which A stretches a vector of unit length.



Matrix Induced 2-Norm

Theorem:

Axlly

| Al|2 = sup

20 2|2

SVD of A:

A=UXV?T with U,V orthogonal,

Letx € R", ||x|2 =1
|Ax(]2 = [UZV x| = |2V x|

lety = Vix = |yl =1

| Ax]|, = || Zy]» = \ Y oy?
i=1

0]

Y = diag(oy,...,0.)

Maximized when y; = 1,y;-1 = 0

So:

[Ax[]2 < 01 = Omax(A)

HAHE — Jmax(A)




Matrix Induced 2-Norm

what happened for symmetric matrix?

[Allz = max ||



Ckatz(x) = a z EKatz(}’) + 48

I(a tz, S I n d ex Normalization cnnstaﬁ: y—x

: : Py c =aAc+ fF1
The solution to Katz Centrality is: g
c=p3(I—aA) 11 Expensive Inverting

Theorem: Neumann Series lad|s = |al - ||Allz = |la| - Anax |@d]s <1 = |al-Apax <1 = |al < }tl

Let A € R™ ™ be a square matrix. l )
: 1
If: / HaAH <1 N a < )
|aAll <1 (using some sub-multiplicative norm, e.g. 2-norm) -
then the inverse of (I — aA) exists and is given by the infinite series:
I-ad) ' =3 (04 amp(lI—ad)'=T+aA+a’A"+a’A’+--
k=0

This is called the Neumann Series (or matrix geometric series).



Katz’s Index

Ekatz(x) =/ﬂ: Z fKatz(}’) +p

Normalization constant Y %

|

c—= azic + 51
> 1
_ k --
o A'1:1-step walks c=p Z(QA) 1 . Amax

k=0
o A%1:2-step walks
A weighted sum over all walks from all
nodes to a given node — decayed with
e Each one weighted by % distance.

o AF1:k-step walks



Katz’s Index

Spectral measures

Katz’s Index: Measures influence by taking into

account the total number of walks between a pair
of nodes

Ckatz (X) — B Zliozo 2x—>y ak[(Ak)xJ

Total number of walks
of length k between x, y

: : : 1 :
« is an attenuation factor in range (0,3) ,where A is the

largest eigenvalue of A
f is to give some nodes more privilege
Long paths are weighted less than short ones



Katz’s Index

Spectral measures

Katz’s Index: Measures influence by taking into account
the total number of walks between a pair of nodes

Ckatz(X) = B Zl?=0 Zx—>y “kI(Ak)xy ]

o
=)
I

01 10 0 a < 1:Long paths  Total number of walks
Al — % g (1] é% are weighted less  of length k between x, y

01 00O

0 1 1 0 0

0110072 21112

1 0111 14 201 o o
A2=111 001 =(12 311

01000/ (10111 o‘

L0 1 1 0 O 2 1 1 1 24

011007 26 512 ° °

1 0111 6 4 6 4.% Number of walks of
A3=|11 001 =|56 42 length 3 between 2, 5

01000 14 20 1 3135) (2425),(23.25),

L0 1 1 0 0 2 6 5 1 24

(2,1,2,5), (2,5,3,5), (2,5,2,5)



How to compute Katz’'s Index?

Spectral measures
Katz’s Index: Give each node a small amount of centrality

for free Instead of
Cratz(X) = @ Z Ckatz(¥) + B solving directly,
Normalization cunsta:‘: yox we iterate thls
Power Iteration: recurrence.
Setc® « 1,k « 1 o
1:¢®  gAck D 151 (1)
2: 1 ||c® — c*kD|| > ¢ (s

3: k<k+1,gotol



Katz’s Index Behavior

o0
c =aAc+p1 c=_ E (ad)*1
k=0

« Value Behavior of Katz Centrality Interpretation

a =10 Ckatz = P11 All nodes get the same score

D<a<xl1 Ckatz ~ B+ a- Al Like in-degree centrality (short paths)
@® Moderate Combines short & mid-length paths Reflects neighborhood influence
®a— % R Katz — eigenvector centrality All walks included (infinite-length paths)
® o= A‘lﬁ X Katz diverges (matrix is not The formula breaks; no meaningful output

invertible)

X a> - X Series does not converge Katz 1s mathematically undefined




Katz’s Index

Spectral measures
Katz’s Index: Suitable for directed acyclic graphs

How to choose a?
For & close to 0, the contribution given by paths longer than
one rapidly declines, and thus

Katz scores are mainly influenced by short paths (mostly in-
degrees)

When the a is large, long paths are devalued smoothly, and

Katz scores are more influenced the by topology of the network

. 1
The measure diverges at a > i

The dominant eigenvector of A is the limit of Katz centrality as
a approaches 1/A from below



O = == O

* The Eigenvalues are -1.68, -1.0, -1.0, 0.35,(3.32

e We assume a=0.25<1/3.32

CK(LtZ — B(I — QAT)_l -1 =

— = O =
—_—t — O = =

SO = =
OO = = O
|
AN
N

and g = 0.2
[ 1.14 ]
Most
11 important
: nodes!
i 0.85 |




Y
e P
(1) N &) More paths of length > 1
' - end up at node u,
compared to node v
/?2 -
AT ‘\"\“
@ a @
(2
./T‘)
a=085 & o ®
A & ]

The red node and all nodes reachable
from it increase their centrality.

B = o ’
longer paths X

are important

“'94;““-#./
a = O - 1 5 _“\‘ I _\
1) [1.35)
ﬂ = = \/2_3 -

short paths are important @



Conclusion

solves the inhomogeneous equation:
c — aAc + F1

Handles disconnected or acyclic graphs
Gives non-zero centrality even to isolated nodes



Conclusion

Problem:

In directed graphs, when a node has high centrality, it can pass
that centrality equally to all out-neighbors.
This may overvalue nodes that are simply linked by an important node
— even if they aren’t important themselves.
Solution:

We can divide the value of passed centrality by the number of
outgoing links, i.e., out-degree of that node

Each connected neighbor gets a fraction of the source node’s
centrality



Introduction to PageRank

Cp(vi) = 0623 1 Ay 5&7) t+5

What if the

degree is 1

zZero?

ou C — OéATD_lC + ]-
dz"" >0 o “p % &
D = diag(d$™t, d3™, . .., do") l

C,=80-aA"D Y 1.1

Similar to Katz Centrality, in practice, ¢ < 1/4, where 1is

the largest eigenvalue of ATD™1. In undirected graphs, the
largest eigenvalue of ATD1 is A= 1; therefore, @ < 1.
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They are closer to all

the other nodes

They have largest
degrees

Z 3
A B
o 58K
4] i i Lots of paths passing
{'/ e ) - through these nodes
They are closer to all & ¢ '
the other nodes, and !
have larger degrees 1 - :
4 © o o ]
5 ’ . a ! ° 0&,‘;’«._\' 7
" o W S e - 0" R g
C D

Examples of A) Degree centrality, B) Closeness centrality, C) Harmonic
Centrality and D) Katz centrality of the same graph.



An Interesting Comparison!

Comparing three centrality values

Generally, the 3 centrality types will be positively correlated
When they are not (or low correlation), it usually reveals interesting information

Low Low Low
Degree Closeness Betweenness
. . . Ego's connections are
H |gh Node is e.mbedde.d ina redundant -
community that is far from o
Degree the rest of the network communication bypasses
the node
. Probably multiple paths in
Hi gh Key node connected to the network, ego is near
Closeness important/active alters many people, but so are
many others
i Ego's few ties are crucial Very rare! Ego
H Igh ff,— ne{.‘workﬂow monopolizes the ties from
Betweenness a small number of people

to many others.

This slide is modified from a slide developed by lames Moody



Any Question?
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